The digestive system in humans involves the chemical breakdown of food and its absorption from the gut

Digestions of Food: The Alimentary Canal (Gut)

1) MOUTH where food is chewed and swallowed

- Hydrolysis of starch to maltose by salivary amylase
- Alkaline conditions assist to break the glycosidic bonds in starch

2) Food travels down the OESOPHAGUS by peristalsis

3) To the STOMACH

- 1. Acidity kills bacteria / Inhibits salivary amylase
- 2. Gastric glands are stimulated by gastrin to secrete gastric juice
 - a. Contains HCl and pepsinogen (inactive pepsin)
 - b. Active pepsin digests proteins \rightarrow would damage glandular tissue
- 3. Damage to stomach wall by acidic gastric juice is prevented by mucus
- 4. Stomach digests proteins by hydrolytic endopeptidase
 - a. pepsinogen + HCl + pepsin \rightarrow pepsin
 - b. Endopeptidases (pepsin/trypsin) break peptide bonds in the middle of polypeptides

SUBSTRATE	PRODUCTS	ENZYME	PRODUCED BY
Proteins	Smaller polypeptides	Endopeptidase: Pepsin	Gastric glands

4) To the **SMALL INTESTINE** (duodenum \rightarrow ileum)

- 1. Liver in the upper abdomen secretes bile
 - a. Liver detoxifies blood by removing poisonous substances / destroys old red blood cells / converts Hb to bilirubin (present in bile) / produces bile / produces urea from amino groups and ammonia
 - b. Gall bladder stores bile
 - c. Secreted into small intestine by bile duct
- 2. Muscles in wall of small intestine mix H₂O and oil forming small droplets/emulsion
- . Larger surface area / higher lipase activity
- a. Bile prevents droplets from running together
 - 3. Exocrine gland of the pancreas secretes pancreatic juice into the duodenum
 - Contains amylase, lipase, exopeptidase, trypsinogen (inactive trypsin)
- a. Exopeptidases break peptide bonds at the end of smaller polypeptide chains
 - 4. Intestinal brush border contains enterokinase
 - Trypsinogen + enterokinase \rightarrow trypsin

- 5. Intestinal brush border contains peptidase
- 6. Intestinal brush border contains maltase
 - . Maltose in lumen of small intestine binds to maltase
 - a. Resulting glucose diffuses into the cytoplasm of epithelial cells
- b. Glucoseis also released back into the intestinal lumen and absorbed further down

∴ Duodenum digests food by HYDROLYTIC enzymes (→H₂O)

SUBSTRATE	PRODUCTS	ENZYME	PRODUCED BY
Starch	Maltose	Pancreatic amylase	Pancreas
Maltose	Glucose	Maltase	Intestinal cells
Proteins	Smaller polypeptides	Endopeptidase: trypsin	Pancreas
Smaller polypeptides	Amino acids; Dipeptides	Exopeptidase	Pancreas
Dipeptides	Amino acids	Peptidase	Intestinal cells
Triglycerides	Glycerol; Monoglycerides; Fatty Acids	Lipase	Pancreas

- 7. Ileum absorbs food
 - a. Last and longest part of small intestine
 - b. Microvilli (brush border) increase surface area

5) To the LARGE INTESTINE (cecum \rightarrow colon \rightarrow rectum) to anus

- 1. Larger in diameter than small intestine but shorter in length
- 2. Stores undigested food before it is egested as faeces

Lactose and Lactose Intolerance

- Lactase splits lactose into β-glucose and galactose
- Lactose intolerant person lacks lactase \rightarrow lactose is neither digested nor absorbed
- High levels of soluble lactose remain in small intestine
 - Supports large populations of bacteria / ferment lactose producing gas / causing discomfort
 - $\circ~$ Water potential becomes more negative / H_2O moves into small intestine / not reabsorbed / diarrhoea
- Adults rarely produce lactase / gene is switched off in adulthood

Absorption of Products of Digestion

Histology of the Ileum in Relation to its Secretory and Absorptive Functions

- Na^+ , Cl⁻, digestive juice secreted into **duodenum** \rightarrow LOWERS water potential
- : H₂O moves from epithelial cells into lumen by osmosis
- Increases efficiency of digestion (hydrolytic reactions) and absorption
- Ileum absorbs ions by active transport \rightarrow INCREASES water potential

• .: H₂O moves back into epithelial cells

The Layers of the Gut Wall and the Ultrastructure of the Epithelium

- Hollow organs with a layer of epithelial cells surrounding the lumen
- Walls of the lumen contain muscles and blood vessels
- Small change in structure has a specific function
 - Small intestine
 - Tube with a thick wall surrounding a hollow lumen
 - Epithelial cells have microvilli on their surface
 - Epithelial cells secretes mucus

Absorption And Active Uptake Of The Products Of Digestion In Small Intestine Glucose

- 1. Absorbed by epithelial cells using a protein carrier
- 2. This protein carrier works by secondary active transport (co-transport system)
- 3. Glucose and Na⁺ are transported across the membrane into the intestinal cell
- 4. Further transport of glucose into blood capillaries by facilitated diffusion
- 5. NOTE: Fructose moves entirely by facilitated diffusion!

Amino Acids

- 1. Absorbed by epithelial cells by secondary active transport
- 2. Co-transport carrier proteins absorb amino acids **and** Na⁺ across the membrane
 - a. Different carrier molecules transport different types of amino acids
 - b. Carriers are associated with peptidase
- 3. Passes from the epithelial cells into capillaries by facilitated diffusion
- 4. Newborns don't produce trypsin, HCl → proteins are not digested before small intestine is reached
 - . Whole proteins may be transported by endocytosis and exocytosis
 - a. Uptake by endocytosis, release into blood by exocytosis
 - b. Often occurs in newborns due to their immature mucosa
 - c. Allows passage of antibodies from mother's milk provides passive immunity for the infant
- d. Accounts for many early food allergies as the protein is recognized as "foreign"

Lipids

- 1. Triglycerides digested into monogylcerate + glycerol + fatty acids by lipase
- 2. Monoglycerides combine with bile to form micelles
 - o 5mm in diameter / forms an emulsion / contains fatty acids and glycerol
- 3. Micelles move to membrane of epithelial cells
- 4. Monoglycerides + glycerol + fatty acids dissolve in bilayer
- 5. Triglycerides re-synthesise in cytoplasm / move into lymph capillaries (→lacteals)

6. Bile stays in small intestine

Oral Rehydration Therapy In The Control Of Gastro-Intestinal Infections

- High amounts of semi-liquid faeces result form toxins produced by microorganisms
 - Toxins block Na⁺ channels in cells lining small intestine
 - \circ Stop reabsorption / conc. of Na⁺ ions in small intestine increases
 - Water potential gradient is in the opposite way (into small intestine)
 - Water is drawn out of epithelial cells and added to the contents of the gut
 - This results in diarrhoea
- Toxins have little effect on glucose co-transport carrier proteins
 - TREATMENT: measured amounts of glucose and mineral salts are mixed with H2O
 - Drinking the solution stimulates Na⁺ and glucose uptake by co-transport proteins
 - H₂O is absorbed from small intestine
 - ORT increases performance of co-transport proteins / adequate amounts of glucose and Na⁺ pass into intestinal cells / clears up attack of diarrhoea
- ∴ Na⁺ is absorbed by Na⁺ channels AND mainly by glucose-Na⁺-co-transport carrier proteins

Control Of Digestive Secretions

Nervous And Hormonal Control Of Salivary, Gastric And Pancreatic Secretions Mammal has 2 communication systems \rightarrow nervous and endocrine system

- Nervous system is based on electrical impulses passing along nerve cells
 - Short-lasting effects, can be switched on or off rapidly
 - Secretes salvia when food enters mouth
- Endocrine system is based on hormones
 - Travel in blood to target organ
 - Produce long-lasting effects
 - Trigger secretion of bile and pancreatic juice
- Endocrine system is only activated with large amounts of food intake
 - Food takes a long time to reach small intestine
 - Food stays there for a **long** time
 - Digestive juice can be secreted as large amounts of food are present
 - Digestive juice contains trypsin and pepsin → both enzymes are peptidases which damage proteins → they would damage epithelial cells if only small amounts of food would be present

Importance Of Simple And Conditioned Reflexes And The Hormones

Gastrin, Secretin And Cholecystokinin-Pancreozymin

Nervous reflexes

- Nerve pathway involving small number of nerve cells $(2/3) \rightarrow$ rapid response
- Automatic response \rightarrow particular stimulus has same effect

Condition reflex

- Salvia and gastric juice are secreted
- By various stimuli associated with food (smell/sight/sound)
- By contact of substances in food with taste buds on tongue

Hormones

- Secreted in response to presence of food in particular region of gut
- Hormones travel in blood to glands / in glands, stimulate secretion of digestive juices
- GASTRIN stimulates exocrine glands in stomach to release gastric juice
- Acids (chyme) from stomach, fatty acids in duodenum stimulate release of SECRETIN
 - Stimulates secretion of alkali (bicarbonate ions) from pancreas
 - Neutralises acidity from intestinal contents
 - When pH reaches neutrality, secretion of secretin is inhibited
 - Inhibits gastric gland secretion
- Acidic chyme from stomach, fat, amino acids in **duodenum** stimulate release of **CHOLECYSTOKININ-PANCREOZYMIN CCK-PZ**
 - Activates smooth muscle contraction/emptying of gall bladder (to release bile)
 - Triggers secretion of enzymes from pancreas
 - Stimulates Medulla oblongata which give a satiety signal
 - \circ Once molecules stimulating CCK are digested \rightarrow CCK inhibited again

• SOMATOSTATIN

- Acts on stomach, duodenum, pancreas
- Inhibits release of gastrin, secretin, and CCK-PZ