

Quantitative analysis of the cardiovascular system lab

Cardiac Cycle

- Systole
- Diastole

Cardiac Output

- Volume of blood ejected per minute
- Averages between 4–8L/min
- CO = Stroke volume X heart rate
 - =70 ml X 60 beats/min

=4,200 ml/min

Stroke Volume Is Determined By Three Factors

- Preload
- Afterload
- Contractility

Preload

- Degree of stretch of myocardial fibers
- Determined by the volume of blood in left ventricle (LV) at end of diastole
- Increased volume -> increased preload-> increased cardiac output (CO)
- Decreased volume -> decreased preload -> decreased cardiac output (CO)
- Compliance of myocardial cells also affects preload

Factors Which Increase Preload

- IV fluids
- Blood
- Vasoconstriction

Factors Which Decrease Preload

- Diuretics
- Dehydration
- Hemorrhage
- Vasodilation

Afterload

- Resistance or pressure the ventricles must overcome to pump blood out
- Left ventricle affected by systemic vascular resistance (SVR)
- Right ventricle affected by pulmonary vascular resistance (PVR)

- Related to arterial pressure or diameter of arteries
- As pressure increases, resistance increases, afterload increases
- As pressure decreases, resistance decreases, afterload decreases

Contractility

- Force generated by the myocardium when it contracts – inotropic property
- Ejection fraction (EF) percentage of LV enddiastolic volume that is ejected with each contraction
- ► EF normally approximately 50–55%

$$\mathsf{EF} = \frac{70\mathsf{cc}}{140\mathsf{cc}}$$

EF = .5 or 50%

Cardiac Auscultation

► **S**1

- Caused by closure of mitral and tricuspid valves
- Signifies beginning of systole
- Best heard over apical area (left, midclavicular, 5th ICS)
- ► **S**2
 - Caused by closure of aortic and pulmonic valves
 - Signifies beginning of diastole
 - Best heard over base area ("A" and "P" areas, 2nd ICS)

"Joyce, write this down in Mr. Cutler's file: "thump . . . thump-thump . . . thumpety thump . . . boink.'"

Gallop Sounds

- S3 Ventricular gallop
 - Heard in early diastole right after S₂
 - Normal in children and young adults
 - Characteristic of LV failure
- S4 Atrial gallop
 - Heard in late diastole right before S1
 - Heard during atrial contraction as atria force blood into resistant ventricles
 - Characteristic of HTN, heart failure, pulmonary disease

Snaps and Clicks

- Abnormal valve sounds
 - Snap stenosis of mitral valve
 - Click stenosis of aortic valve

Murmurs

- Caused by turbulent blood flow
 - Narrowed or stenosed valve
 - Incompetent or regurgitant valve
 - Atrial or ventricular septal defect
 - Increased metabolic states
- Classified based on timing in cardiac cycle
 - Systolic
 - Diastolic
- Quality of murmur blowing, rumbling or whistling

Loudness or intensity is graded

- Grade I/VI
- Grade II/VI
- Grade III/VI
- Grade IV/VI
- Grade V/VI
- \circ Grade VI/VI

