EXTRA RENAL MATERIAL

D.H

Hormones acting on kidney

Acid-base physiology

Metabolic acidosis Metabolic alkalosis Respiratory acidosis Respiratory alkalosis

$$\begin{array}{cccc} \text{pH} & \text{Pco}_2 & [\text{HCO}_3^-] \\ \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \uparrow \\ \downarrow & \uparrow & \uparrow \\ \uparrow & \downarrow & \downarrow \end{array}$$

Compensatory response
Hyperventilation
Hypoventilation
↑ renal [HCO₃] reabsorption
↓ renal [HCO₃] reabsorption
tion

Henderson-Hasselbalch equation: $pH = pKa + log \frac{[HCO_3^-]}{0.03 Pco_2}$

Key: $\uparrow \downarrow = 1^{\circ}$ disturbance; $\downarrow \uparrow =$ compensatory response.

Acidosis/alkalosis

Renal tubular acidosis

Type 1 Defect in H^+ pump \rightarrow failure to acidify urine.

Type 2 Renal loss of bicarbonate.

Type 4 Hypoaldosteronism \rightarrow hypokalemia \rightarrow inhibition of ammonia excretion.

Acid-base compensations

The following formulas give appropriate compensations for a single disorder. If the formula

does not match the actual values, suspect a mixed disorder.

Metabolic acidosis Winter's formula: $PCO_2 = 1.5 \text{ (HCO}_3^-) + 8 \pm 2$. Metabolic alkalosis $PCO_2 \uparrow 0.7 \text{ mmHg for every } \uparrow 1 \text{ mEq/L HCO}_3^-$.

Respiratory acidosis Acute— ↑ 1 mEq/L HCO₃ for every ↑ 10 mmHg PcO₂.

Chronic— \uparrow 3.5 mEq/L HCO₃⁻ for every \uparrow 10 mmHg PcO₂.

Respiratory alkalosis Acute— \downarrow 2 mEq/L HCO₃⁻ for every \downarrow 10 mmHg PCO₂.

Chronic— \downarrow 5 mEq/L HCO₃⁻ for every \downarrow 10 mmHg PCO₂.

Casts

Casts in urine:

RBC casts—glomerular inflammation (nephritic syndromes), ischemia, or malignant hypertension.

WBC casts—tubulointerstitial disease, acute pyelonephritis, glomerular disorders.

Granular ("muddy brown") casts—acute tubular necrosis.

Waxy casts—advanced renal disease/CRF.

Hyaline casts—nonspecific.

Presence of casts indicates that hematuria/pyuria is of renal origin.

Bladder cancer → RBCs, no casts.

Acute cystitis → WBCs, no casts.

White blood cell casts

Hyaline casts

Granular casts

Electrolyte disturbances

Na ⁺ Disorientation, stupor, coma Neurologic: irritability, delirium, coma Cl [−] 2° to metabolic alkalosis, hypokalemia, hypovolemia, ↑ aldosterone 2° to non–anion gap acidosis K ⁺ U waves on ECG, flattened T waves, arrhythmias, paralysis Peaked T waves, wide QRS, arrhythmias Ca ²⁺ Tetany, neuromuscular irritability Delirium, renal stones, abdominal pain, not necessarily calciuria Mg ²⁺ Neuromuscular irritability, arrhythmias Delirium, ↓ DTRs, cardiopulmonary arrest PO ₄ ²⁻ Low-mineral ion product causes bone loss, osteomalacia High-mineral ion product causes metastatic calcification, renal stones, met calcifications	Electrolyte	Low serum concentration	High serum concentration
hypovolemia, ↑ aldosterone K⁺ U waves on ECG, flattened T waves, arrhythmias, paralysis Ca²+ Tetany, neuromuscular irritability Mg²+ Neuromuscular irritability, arrhythmias PO₄²- Low-mineral ion product causes bone loss, osteomalacia Peaked T waves, wide QRS, arrhythmias Delirium, renal stones, abdominal pain, not necessarily calciuria Delirium, ↓ DTRs, cardiopulmonary arrest High-mineral ion product causes metastatic calcification, renal stones, met	Na ⁺	Disorientation, stupor, coma	Neurologic: irritability, delirium, coma
arrhythmias, paralysis Ca ²⁺ Tetany, neuromuscular irritability Mg ²⁺ Neuromuscular irritability, arrhythmias PO ₄ ²⁻ Low-mineral ion product causes bone loss, osteomalacia Delirium, renal stones, abdominal pain, not necessarily calciuria Delirium, ↓ DTRs, cardiopulmonary arrest High-mineral ion product causes metastatic calcification, renal stones, met	Cl-		2° to non–anion gap acidosis
necessarily calciuria Mg ²⁺ Neuromuscular irritability, arrhythmias PO ₄ ^{2−} Low-mineral ion product causes bone loss, osteomalacia Neuromuscular irritability, arrhythmias Low-mineral ion product causes metastatic calcification, renal stones, met	K ⁺	·	Peaked T waves, wide QRS, arrhythmias
PO ₄ ²⁻ Low-mineral ion product causes bone loss, High-mineral ion product causes metastatic calcification, renal stones, met	Ca ²⁺	Tetany, neuromuscular irritability	
osteomalacia calcification, renal stones, met	$\mathrm{Mg^{2+}}$	Neuromuscular irritability, arrhythmias	Delirium, ↓ DTRs, cardiopulmonary arrest
	PO ₄ ²⁻	1	calcification, renal stones, met

REPRODUCTIVE EXTRA

DH

Ligaments of the uterus

Suspensory ligament

of ovaries

Transverse cervical

(cardinal) ligament

Round ligament

of uterus

Broad ligament

Contains the ovarian vessels.

Contains the uterine vessels.

Contains no important structures. Travels through

the inguinal canal and attaches distally to the

labia majora.

Contains the round ligaments of the uterus and

ovaries and the fallopian tubes.

Round like the number of structures it carries: 0.

Round ligament of uterus

Fallopian tube

Ovary

Fimbria

Broad ligament

Cardinal ligament

Autonomic innervation of the male sexual response

Erection is mediated by the Parasympathetic nervous system. Nitric oxide is vasodilator.

Emission is mediated by the Sympathetic

nervous system.

Ejaculation is mediated by visceral and somatic

nerves.

Point and Shoot.

Derivation of sperm parts

Acrosome is derived from the Golgi apparatus and flagellum (tail) from one of the centrioles.

Middle piece (neck) has Mitochondria.

Feeds on Fructose.

Sperm development

Spermatogenesis begins at puberty with spermatogonia (type A and type B). Full development takes 2 months. Spermatogenesis occurs in Seminiferous tubules.

Blood-testis barrier is a physical barrier in the testis between the tissues responsible for spermatogenesis and the bloodstream (to avoid autoimmune response).

SEVEN UP:

Seminiferous tubules

Epididymis

Vas deferens

Ejaculatory ducts

(Nothing)

Urethra

Penis

Sertoli cells

Support Sperm

Synthesis.

Male spermatogenesis

PRODUCTS	FUNCTIONS OF PRODUCTS	
Androgen-binding protein (ABP)	Ensures that testosterone in seminiferous tubule is high	
Inhibin	Inhibits FSH	
Testosterone	Differentiates male genitalia, has anabolic effects on protein metabolism, maintains gametogenesis, maintains libido, inhibits GnRH, and fuses epiphyseal plates in bone	

FSH → Sertoli cells → Sperm production ← LH → Leydig cell → testosterone —

Androgens

Source

Targets

Function

Testosterone, dihydrotestosterone (DHT), androstenedione.

DHT and testosterone (testis), androstenedione (adrenal).

Prostate, seminal vesicles, epididymis, liver, muscle, brain, skin.

- Differentiation of wolffian duct system into internal gonadal structures
- 2. 2° sexual characteristics and growth spurt during puberty, close epiphyseal plates
- 3. Required for normal spermatogenesis
- Anabolic effects— ↑ muscle size, ↑ RBC production
- 5. ↑ libido

Potency—DHT > testosterone > androstenedione.

Testosterone is converted to DHT by the enzyme 5αreductase, which is inhibited by finasteride.

Testosterone and androstenedione are converted to estrogen in adipose tissue and Sertoli cells by enzyme aromatase.

Estrogen

Source

Function

Ovary (17β-estradiol), placenta (estriol), blood (aromatization).

- 1. Growth of follicle
- Endometrial proliferation
- 3. Development of genitalia
- 4. Stromal development of breast
- 5. Female fat distribution
- 6. Hepatic synthesis of transport proteins (↑ synthesis of sex hormone–binding globulin)
- 7. Feedback inhibition of FSH and LH
- LH surge (estrogen negative feedback on LH secretion switches to positive from negative just before LH surge)
- 9. ↑ myometrial excitability
- 10. ↑ HDL, ↓ LDL

Potency—estradiol > estrone > estriol.

Pregnancy:

50-fold ↑ in estradiol and estrone

1000-fold ↑ in estriol (indicator of fetal wellbeing)

Progesterone

Source Function Corpus luteum, placenta, adrenal cortex, testes.

- 1. Stimulation of endometrial glandular secretions and spiral artery development
- 2. Maintenance of pregnancy
- 3. ↓ myometrial excitability
- Production of thick cervical mucus, which inhibits sperm entry into the uterus
- 5. ↑ body temperature
- 6. Inhibition of gonadotropins (LH, FSH)
- 7. Uterine smooth muscle relaxation (preventing contractions)

Elevation of progesterone is indicative of ovulation. Progesterone Prepares for Pregnancy.

Menstrual cycle

Follicular growth is fastest
during 2nd week of
proliferative phase.

Estrogen stimulates
endometrial proliferation.

Progesterone maintains
endometrium to support
implantation.

↓ progesterone leads to ↓ fertility.

Follicular phase can vary in
length. Luteal phase is usually
a constant 14 days. Ovulation

day = menstruation day 14.

Ovulation

Estrogen surge day before ovulation.

Stimulates LH, inhibits FSH.

LH surge causes ovulation (rupture of follicle).

↑ temperature (progesterone induced).

Ferning of cervical mucosa.

Oral contraceptives prevent estrogen surge, LH surge → ovulation does not occur.

Mittelschmerz—blood from ruptured follicle causes peritoneal irritation that can mimic appendicitis.

Meiosis and ovulation

1° oocytes begin meiosis I during fetal life and complete meiosis I just prior to ovulation.
Meiosis I is arrested in prOphase for years until Ovulation (1° oocytes).
Meiosis II is arrested in METaphase until

fertilization (2° oocytes).

An egg MET a sperm.

1° follicles

1° oocyte

2° oocyte

Pregnancy

Fertilization most commonly occurs in upper end of oviduct. Occurs within 1 day after ovulation.

Implantation occurs 6 days after fertilization. Trophoblasts secrete β-hCG, which is detectable in blood 1 week after conception and on home test in urine 2 weeks after conception.

↑ estrogen, progesterone, oxytocin, and prolactin at term (hCG peak is in 1st trimester). Lactation—during pregnancy, estrogen inhibits prolactin and inhibits lactation. After labor, the ↓ in maternal estrogen induces lactation. Suckling is required to maintain milk production, since ↑ nerve stimulation ↑ oxytocin.

hCG

Source Function Syncytiotrophoblast of placenta.

- Maintains the corpus luteum (and thus progesterone) for the 1st trimester by acting like LH (otherwise no luteal cell stimulation, and abortion results). In the 2nd and 3rd trimester, the placenta synthesizes its own estriol and progesterone and the corpus luteum degenerates.
- 2. Used to detect pregnancy because it appears early in the urine (see above).
- 3. Elevated hCG in women with hydatidiform moles or choriocarcinoma.

Menopause

Cessation of estrogen production with age-linked decline in number of ovarian follicles. Average age of onset is 51 years (earlier in smokers).

Hormonal changes:

↓ estrogen, ↑↑ FSH, ↑ LH
(no surge), ↑ GnRH.

Menopause causes HAVOC:
Hot flashes, Atrophy of the
Vagina, Osteoporosis,
Coronary artery disease.

Early menopause can indicate
premature ovarian failure.

Hydatidiform mole

A pathologic ovum ("empty egg"—ovum with no DNA) resulting in cystic swelling of chorionic villi and proliferation of chorionic epithelium (trophoblast). Most common precursor of choriocarcinoma. High β-hCG. "Honeycombed uterus," "cluster of grapes" appearance. Genotype of a complete mole is 46,XX and is completely paternal in origin (no maternal chromosomes).

Complete moles have no associated fetus and commonly lead to an abnormally enlarged uterus. PARTial mole is made up of 3 or more PARTS (triploid or tetraploid); may contain fetal PARTS. Partial moles are less likely to be associated with excessive uterine size (see Color Image 74). Moles can lead to uterine rupture. Treat with dilatation and curettage and methotrexate. Monitor β-hCG.

Complete—2 sperm + empty egg. Partial—2 sperm + 1 egg.

Pregnancy complications

Abruptio placentae—premature detachment of placenta from implantation site. Painful uterine bleeding (usually during 3rd trimester). Fetal death. May be associated with DIC. ↑ risk with smoking, hypertension, cocaine use.

Placenta accreta—defective decidual layer allows placenta to attach directly to myometrium. Predisposed by prior C-section or inflammation. May have massive hemorrhage after delivery.

Placenta previa—attachment of placenta to lower uterine segment. May occlude internal os. Painless bleeding in any trimester. Prior C-section predisposes.

Ectopic pregnancy—most often in fallopian tubes, predisposed by salpingitis (PID). Suspect with ↑ hCG and sudden lower abdominal pain; confirm with ultrasound. Often clinically mistaken for appendicitis.

Painful bleeding.

Massive bleeding.

Painless bleeding.

Pain without bleeding.